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1. Introduction

The integrable open spin-1/2 XXZ chain has been subjected to intensive studies due to its

growing applications in various fields of physics, e.g., statistical mechanics, string theory

and condensed matter physics. However, obtaining exact solutions for this model has been

a rather challenging and elusive task for many years. Various progress have been made in

obtaining solutions for this model, either using the Bethe ansatz approach for diagonal [1]–

[4], constrained nondiagonal [5]–[9] and nondiagonal cases at roots of unity [10]–[13], or

using the representation theory of the q-Onsager algebra for general nondiagonal cases [14].

Approaches based on boundary Temperley-Lieb algebra and its representations have also

been presented recently, from which the spectral properties of the chain have been stud-

ied [15]. Upon obtaining the desired solution, the next natural question that needed to

be addresed is its practicality within various contexts. One important area where these

solutions have found creditable applications is in determining finite size corrections to the

ground state energy. By relating to conformal invariance, these finite size corrections are

shown to be related directly to other crucial parameters like the critical indices, central

charge and conformal dimensions [17]–[20]. There are few methods and approaches to

accomplish this task. De Vega and Woynarowich [21] derived integral equations for cal-

culating leading finite-size corrections for models solvable by Bethe Ansatz approach [22].

This was then generalized to nested Bethe Ansatz models as well [23]. Another approach

was introduced by Woynarowich and Eckel [24, 25], which utilizes Euler-Maclaurin formula

and Wiener-Hopf integration to compute these corrections for the closed XXZ chain. Oth-

ers have also studied more general integrable spin chain models e.g., XXZ diagonal [2, 3],
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nondiagonal cases [28], quantum spin 1/2 chains with non-nearest-neighbour short-range

interaction [26] and XXZ(1/2, 1) which contains alternating spins of 1/2 and 1 [27], within

similar framework. Other approaches e.g., based on NLIE (Nonlinear Integral Equations)

have also been successful in determining these effects for integrable lattice models [29]

and related integrable quantum field theories, such as the sine-Gordon model with peri-

odic [30]–[32], Dirichlet [33]–[37] and Neumann boundary conditions [28, 42].

With similar aim in mind, utilizing an exact solution for the integrable spin-1/2 XXZ

chain with nondiagonal boundary terms at roots of unity we found earlier for even number

of sites [11, 38],1 and extending the solution to account for odd number of sites as well,

we compute the correction of order 1/N (Casimir energy) to the ground state energy

together with its low lying excited states (multi-hole states). We employ the method

introduced by Woynarovich and Eckle [24] that makes use of Euler-Maclaurin formula [45]

and Wiener-Hopf integration [46]. In particular, we compute the analytical expressions for

central charge and the conformal dimensions of low lying excited states. We also compare

these analytical results to corresponding numerical results obtained by solving the model

numerically for some large number of sites.

The outline of this article is as follows. In section 2, we review the Bethe Ansatz

solution [11, 38]. We also present an extension of that result to include solution for odd

N . In section 3, we present the calculation of 1/N correction to the ground state energy

and hence our results for the central charge and conformal dimensions of low lying excited

states. We notice that the lowest energy state for even N of this model has one hole. Hence,

the true ground state (lowest energy state without holes) lies in the odd N sector. Similar

behaviour are also found for the open chain with diagonal boundary terms, for certain

values of boundary parameters [47]. It is known that (critical) XXZ model with nondi-

agonal boundary terms corresponds to (conformally invariant) free Boson with Neumann

boundary condition whereas the diagonal ones are related to the Dirichlet case [34 – 36, 42].

Although the model we study here has nondiagonal boundary terms, we find that the con-

formal dimensions for this model resemble that of the Dirichlet boundary condition. Some

numerical results are presented in section 4 to confirm and support the analytical results

derived in section 3. Here, we solve the model numerically for some large but finite N and

further employ an algorithm due to Vanden Broeck and Schwartz [39]–[40] to extrapolate

the results for N → ∞ limit. We conclude with a discussion of our results and some

potential open problems in section 5.

2. Bethe ansatz

We begin this section by reviewing recently proposed Bethe Ansatz solution [11, 38] for

the following model [43, 44]

H = H0 +
1

2
sinh η( cosech α−σx

1 + cosech α+σx
N ) , (2.1)

1This solution, in contrast to [6]–[9] does not assume any constraint among the boundary parameters.
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where the “bulk” Hamiltonian is given by

H0 =
1

2

N−1
∑

n=1

(

σx
nσx

n+1 + σy
nσy

n+1 + cosh η σz
nσz

n+1

)

. (2.2)

In the above expressions, σx, σy, σz are the usual Pauli matrices, η is the bulk anisotropy

parameter (taking values η = iπ
p+1 , with p odd), α± are the boundary parameters, and N

is the number of spins/sites. Note that, this model has only two boundary parameters.

Other boundary parameters (as they appear in the original Hamiltonian in [43]) have been

set to zero. We restrict the values of α± to be pure imaginary to ensure the Hermiticity of

the Hamiltonian. The Bethe Ansatz equations for both odd and even N are given by

δ(u
(1)
j ) h(2)(u

(1)
j − η)

δ(u
(1)
j − η) h(1)(u

(1)
j )

= −
Q2(u

(1)
j − η)

Q2(u
(1)
j + η)

, j = 1 , 2 , . . . ,M1 ,

h(1)(u
(2)
j − η)

h(2)(u
(2)
j )

= −
Q1(u

(2)
j + η)

Q1(u
(2)
j − η)

, j = 1 , 2 , . . . ,M2 . (2.3)

where

δ(u) = 24 (sinhu sinh(u + 2η))2N sinh 2u sinh(2u + 4η)

sinh(2u + η) sinh(2u + 3η)
sinh(u + η + α−)

sinh(u + η − α−) sinh(u + η + α+) sinh(u + η − α+) cosh4(u + η) (2.4)

and

Qa(u) =
Ma
∏

j=1

sinh(u − u
(a)
j ) sinh(u + u

(a)
j + η) , a = 1 , 2 , (2.5)

M1 and M2 are the number of Bethe roots, u
(1)
j and u

(2)
j (zeros of Q1(u) and Q2(u)

respectively). However, h(1)(u) and h(2)(u) differ for odd and even values of N , as will

be noted below. The energy eigenvalues in terms of the “shifted” Bethe roots ũ
(a)
j are

given by

E =
1

2
sinh2 η

2
∑

a=1

Ma
∑

j=1

1

sinh
(

ũ
(a)
j − η

2

)

sinh
(

ũ
(a)
j + η

2

) +
1

2
(N − 1) cosh η . (2.6)

where ũ
(a)
j ≡ u

(a)
j + η

2 .

2.1 Even N

We begin by recalling [38] the structure of roots distribution for this case. The Bethe roots

ũ
(a)
j for the lowest energy state have the form

{

µλ
(a,1)
j : j = 1 , 2 , . . . ,M(a,1)

µλ
(a,2)
j + iπ

2 , : j = 1 , 2 , . . . ,M(a,2)

, a = 1 , 2 , (2.7)

– 3 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
9

where λ
(a,b)
j are real. Here, M(1,1) = M(2,1) = N

2 , and M(1,2) = p+1
2 , M(2,2) = p−1

2 . The

µλ
(a,1)
j are the zeros of Qa(u) that form real sea (“sea roots”) and µλ

(a,2)
k are real parts of

the “extra roots” (also zeros of Qa(u)) which are not part of the “seas”. Hence, there are

two “seas” of real roots. We employ notations similar to the one used in [28],

en(λ) =
sinh

(

µ(λ + in
2 )

)

sinh
(

µ(λ − in
2 )

) , gn(λ) = en

(

λ ±
iπ

2µ

)

=
cosh

(

µ(λ + in
2 )

)

cosh
(

µ(λ − in
2 )

) . (2.8)

Rewriting bulk and boundary parameters [28], η = iµ, α± = iµa±,2 where µ = π
p+1 and

taking

h(1)(u) =
8 sinh2N+1(u + 2η) cosh2(u + η) cosh(u + 2η)

sinh(2u + 3η)
, h(2)(u) = h(1)(−u − 2η) , (2.9)

the Bethe Ansatz equations (2.3) for the sea roots then take the following form [11, 38]

e1

(

λ
(1,1)
j

)2N+1[

g1

(

λ
(1,1)
j

)

e1+2a−

(

λ
(1,1)
j

)

e1−2a−

(

λ
(1,1)
j

)

e1+2a+

(

λ
(1,1)
j

)

e1−2a+

(

λ
(1,1)
j

)]−1

= −

N/2
∏

k=1

[

e2

(

λ
(1,1)
j −λ

(2,1)
k

)

e2

(

λ
(1,1)
j +λ

(2,1)
k

)]

(p−1)/2
∏

k=1

[

g2

(

λ
(1,1)
j −λ

(2,2)
k

)

g2

(

λ
(1,1)
j +λ

(2,2)
k

)]

,

(2.10)

and

e1

(

λ
(2,1)
j

)2N+1
g1

(

λ
(2,1)
j

)−1
= −

N/2
∏

k=1

[

e2

(

λ
(2,1)
j − λ

(1,1)
k

)

e2

(

λ
(2,1)
j + λ

(1,1)
k

)]

× (2.11)

×

(p+1)/2
∏

k=1

[

g2

(

λ
(2,1)
j − λ

(1,2)
k

)

g2

(

λ
(2,1)
j + λ

(1,2)
k

)]

,

respectively, where j = 1 , . . . , N
2 . The corresponding ground-state counting functions are

h
(1)(λ) =

1

2π

{

(2N+1)q1(λ)−r1(λ)−q1+2a−(λ)−q1−2a−(λ)−q1+2a+(λ)−q1−2a+(λ) (2.12)

−

N/2
∑

k=1

[

q2

(

λ−λ
(2,1)
k

)

+q2

(

λ+λ
(2,1)
k

)]

−

(p−1)/2
∑

k=1

[

r2

(

λ−λ
(2,2)
k

)

+r2

(

λ+λ
(2,2)
k

)]

}

,

and

h
(2)(λ) =

1

2π

{

(2N + 1)q1(λ) − r1(λ) −

N/2
∑

k=1

[

q2

(

λ − λ
(1,1)
k

)

+ q2

(

λ + λ
(1,1)
k

)]

−

(p+1)/2
∑

k=1

[

r2

(

λ − λ
(1,2)
k

)

+ r2

(

λ + λ
(1,2)
k

)]

}

. (2.13)

2Bethe Ansatz equations written in this and subsequent sections are true only for suitable values of a±,

namely ν−1
2

< |a±| < ν+1
2

, a+a− > 0 , where ν = p + 1
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where qn(λ) and rn(λ) are odd functions defined by

qn(λ) = π + i ln en(λ) = 2 tan−1 (cot(nµ/2) tanh(µλ)) ,

rn(λ) = i ln gn(λ) . (2.14)

These counting functions satisfy the following

h
(l)(λj) = j , j = 1 , . . . ,

N

2
(2.15)

In (2.15) above, l = 1 , 2

2.2 Odd N

In this section, we present an extension of the previous results to include solutions for

odd N values. The roots distribution is similar to the previous case, but now we have

M(1,1) = M(2,1) = N+1
2 , and M(1,2) = M(2,2) = p−1

2 . Using the following in (2.3),

h(1)(u) =
sinh(u − α+ + η) sinh(u + α+ + η) sinh2N+1(u + 2η) cosh2(u + η) cosh(u + 2η)

sinh(2u + 3η)
,

h(2)(u) = h(1)(−u − 2η) , (2.16)

we obtain the Bethe Ansatz equations

e1

(

λ
(1,1)
j

)2N+1 [

g1

(

λ
(1,1)
j

)

e1+2a−

(

λ
(1,1)
j

)

e1−2a−

(

λ
(1,1)
j

)]−1
= (2.17)

−

(N+1)/2
∏

k=1

[

e2

(

λ
(1,1)
j −λ

(2,1)
k

)

e2

(

λ
(1,1)
j +λ

(2,1)
k

)]

(p−1)/2
∏

k=1

[

g2

(

λ
(1,1)
j −λ

(2,2)
k

)

g2

(

λ
(1,1)
j +λ

(2,2)
k

)]

,

and

e1

(

λ
(2,1)
j

)2N+1 [

g1

(

λ
(2,1)
j

)

e1+2a+

(

λ
(2,1)
j

)

e1−2a+

(

λ
(2,1)
j

)]−1
= (2.18)

−

(N+1)/2
∏

k=1

[

e2

(

λ
(2,1)
j −λ

(1,1)
k

)

e2

(

λ
(2,1)
j +λ

(1,1)
k

)]

(p−1)/2
∏

k=1

[

g2

(

λ
(2,1)
j −λ

(1,2)
k

)

g2

(

λ
(2,1)
j +λ

(1,2)
k

)]

,

respectively, where j = 1 , . . . , N+1
2 . Note the presence of parameter-dependant terms in

both the equations above. One can also notice the number of extra roots changes from p+1
2

to p−1
2 for Q1(u). The ground-state counting functions for this case read

h
(1)(λ) =

1

2π

{

(2N+1)q1(λ)−r1(λ)−q1+2a−(λ)−q1−2a−(λ) (2.19)

−

(N+1)/2
∑

k=1

[

q2

(

λ−λ
(2,1)
k

)

+q2

(

λ+λ
(2,1)
k

)]

−

(p−1)/2
∑

k=1

[

r2

(

λ−λ
(2,2)
k

)

+r2

(

λ+λ
(2,2)
k

)]

}

,

and

h
(2)(λ) =

1

2π

{

(2N+1)q1(λ)−r1(λ)−q1+2a+(λ)−q1−2a+(λ) (2.20)

−

(N+1)/2
∑

k=1

[

q2

(

λ−λ
(1,1)
k

)

+q2

(

λ+λ
(1,1)
k

)]

−

(p−1)/2
∑

k=1

[

r2

(

λ−λ
(1,2)
k

)

+r2

(

λ+λ
(1,2)
k

)]

}

,

– 5 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
9

As for even N , we again have the following

h
(l)(λj) = j , j = 1 , . . . ,

N + 1

2
(2.21)

where l = 1 , 2. Note that (2.15) and (2.21) can be written more compactly as

h
(l)(λj) = j , j = 1 , . . . ,

⌊

N + 1

2

⌋

(2.22)

where ⌊. . .⌋ denotes the integer part and µλ⌊N+1
2

⌋ is the largest sea root for that “sea”.

Subsequently, we shall denote largest sea roots as µΛl.

3. Finite-size correction of order 1/N

In this section, we shall compute the finite-size correction for the ground state and low

lying excited states. For these excited states, we restrict our analysis to excitations by

holes which are located to the right of the real sea roots. Applying (2.7) to (2.6), we get

the lowest state energy eigenvalues for chain of finite length N ,

E = −
π sin µ

µ

{

1

2

2
∑

a=1

⌊N+1
2

⌋
∑

j=−⌊N+1
2

⌋

a1

(

λ
(a,1)
j

)

− a1(0) +

2
∑

a=1

M(a,2)
∑

j=1

b1

(

λ
(a,2)
j

)

}

+
1

2
(N − 1) cos µ .

(3.1)

where notations from [28] have again been adopted

an(λ) =
1

2π

d

dλ
qn(λ) =

µ

π

sin(nµ)

cosh(2µλ) − cos(nµ)
,

bn(λ) =
1

2π

d

dλ
rn(λ) = −

µ

π

sin(nµ)

cosh(2µλ) + cos(nµ)
. (3.2)

Note that M(a,2) in (3.1), refers to number of extra roots for Qa(u). The first and third

terms in the curly bracket of (3.1) are summed over the number of sea roots and extra roots

respectively. As one considers next lowest excited state, the number of sea roots and extra

roots change. Hence, for these states of low lying excitations (with real sea), the very same

term in the first sum will again be summed over accordingly between approriate limits

dictated by the number of sea roots. As for the summation over extra roots, the function

summed over depends on the imaginary part of these roots, especially in the presence of

2-strings. However, as one shall see, for 1/N correction (in the N → ∞ limit), only the sum

over the sea roots contributes. The second sum in (3.1) contributes to order 1 correction

(boundary energy) which we have considered elsewhere3[38].

3Equation (4.26) for the boundary energy in [38] holds both for even and odd values of N

– 6 –
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3.1 Sum-rule and hole-excitations

Now we present some results based on the solution of the model (2.1) for N = 2 , 3 , . . . , 7.

We begin with even N case. We find for even N , excited states contain odd number of

holes for each Qa(u). This can be seen from the following analysis on counting functions.

For the lowest energy state the counting functions are given by (2.12) and (2.13). By using

the fact that qn(λ) → sgn(n)π − µn and rn(λ) → −µn as λ → ∞ and ρ(l) = 1
N

dh
(l)

dλ we

have the following sum rule
∫ ∞

Λl

dλ ρ(l)(λ) =
1

N

(

h
(l)(∞) − h

(l)(Λl)
)

=
1

N

(

1

2
+ 1

)

(3.3)

µΛl refers to the largest sea root. As before l = 1 , 2. We make use of the fact that

h
(l)(∞) =

N

2
+

3

2

h
(l)(Λl) =

N

2
(3.4)

From (3.3) and (3.4), we see that there is one hole located to the right of the largest sea

root. Similar analysis for low lying (multi-hole) excited states yields the following
∫ ∞

Λl

dλ ρ(l)(λ) =
1

N

(

h
(l)(∞) − h

(l)(Λl)
)

=
1

N

(

1

2
+ NH

)

(3.5)

where NH is the number of holes (odd) to the right of the corresponding largest sea root.

To illustrate the results above, we consider the following low lying excited states with N
2 −1

and N
2 − 2 sea roots and therefore different number of extra roots than the lowest energy

state.4 The former case is found to have one hole with p−1
2 and p−3

2 extra roots in addition

to a 2-string from each of the Q1(u) and Q2(u) respectively. From,

h
(l)(∞) =

N

2
+

1

2

h
(l)(Λl) =

N

2
− 1 (3.6)

one has

1

N
(h(l)(∞) − h

(l)(Λl)) =
1

N

(

1

2
+ 1

)

(3.7)

Hence giving NH = 1. The later case has three holes with p+1
2 and p−1

2 extra roots and a

2-string from each of the Qa(u) with a = 1 , 2. Similar analysis,

h
(l)(∞) =

N

2
+

3

2

h
(l)(Λl) =

N

2
− 2 (3.8)

4The lowest energy state has N
2

sea roots. As for the extra roots, there are p+1
2

and p−1
2

of them for

Q1(u) and Q2(u) respectively

– 7 –



J
H
E
P
0
5
(
2
0
0
7
)
0
6
9

yields

1

N
(h(l)(∞) − h

(l)(Λl)) =
1

N

(

1

2
+ 3

)

(3.9)

giving NH = 3. The total number of roots are the same for all these states. There are also

excited states with equal number of sea and extra roots as for the state of lowest energy,

but with position of the single hole nearer to the origin than that of the lowest energy state,

suggesting the usual bulk hole-excitation scenario, Ehole(λ
(a)) increases as λ(a) → 0 where

Ehole(λ
(a)) is the energy due to the presence of holes and λ(a), with a = 1 , 2 denote the

positions of the holes in both “seas”. We shall compute the explicit expression for energy

due to holes shortly.

As for the odd N case, we have the true ground state, namely state of lowest energy

without hole. From the counting functions, (2.19) and (2.20), we have

∫ ∞

Λl

dλ ρ(l)(λ) =
1

N

(

h
(l)(∞) − h

(l)(Λl)
)

=
1

2N
(3.10)

As before l = 1 , 2, and we make use of the fact that

h
(l)(∞) =

N

2
+ 1

h
(l)(Λl) =

N + 1

2
(3.11)

From (3.11), we see that this state of lowest energy for odd N has no hole, signifying the

true ground state. Similar analysis for low lying excited states yields the following

∫ ∞

Λl

dλ ρ(l)(λ) =
1

N

(

h
(l)(∞) − h

(l)(Λl)
)

=
1

N

(

1

2
+ NH

)

(3.12)

where NH is the number of holes (even) to the right of sea roots. Hence, for odd N case,

there are even number of holes (for each Qa(u)), with a = 1 , 2, for the excited states, e.g.,

for the first excited state with N−1
2 sea roots,

h
(l)(∞) =

N + 1

2
+

3

2

h
(l)(Λl) =

N − 1

2
(3.13)

which signifies the presence of two holes.

It is known for simpler models of spin chains e.g., closed XXZ chain that even number

of holes are present in chains with even number of spins and vice versa. Hence, the true

ground state (lowest energy state with no holes) for these models is found to lie in even N

sector. The reverse scenario (one hole in the lowest energy state for even N and ground

state in odd N sector) we find here for this model can be explained using some heuristic

arguments based on spin and magnetic fields at the two boundaries, similar to the one
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given in section 3 of [38].5 In footnote 2, we notice the signs of a+ and a− must be

the same for boundary parameter region of interest. Hence, in Hamiltonian (2.1), the

direction of the magnetic fields at the two boundaries are also the same (Both up or both

down). This upsets the antiferromagnetic spin arrangement at the boundaries, favouring

spin allignments along the same direction at the boundaries for chains with even N . This

causes the following: presence of odd N behaviours in the even N chain, namely the lowest

energy state for even N sector has one hole for each Qa(u). Spins at the boundaries for the

odd N chain will not experience such spin upset since the parallel magnetic fields favours

the antiferromagnetic arrangement of an odd N chain. Therefore, the lowest energy state

for odd N chain has no holes. In other words, the true ground state exists in odd N sector.

Further effects are the presence of odd and even number of holes in chains with even and

odd N respectively as shown in the analysis above.

Now, the energy due to hole excitations can be presented. We consider first the lowest

energy state for even N case with one hole. Using

1

N

N
2

∑

k=−N
2

g(λ − λ
(a,1)
k ) ≈

∫ ∞

−∞
dλ′ ρ(l)(λ′)g(λ − λ′) −

1

N
g(λ − λ̃(a)) (3.14)

for some arbitrary function g(λ) and

ρ(l) =
1

N

dh
(l)

dλ
(3.15)

where l = 1 , 2, µλ
(a,1)
k ≡ sea roots, with a = 1 , 2, and µλ̃(a) ≡ position of the hole for each

of the Qa(u), one can write down the sum of the two densities

ρ(1)(λ)+ρ(2)(λ)=4a1(λ)−

∫ ∞

−∞
dλ′(ρ(1)(λ′)+ρ(2)(λ′))a2(λ−λ′)+

1

N

[

a2(λ−λ̃(1))+a2(λ−λ̃(2))
]

+
1

N

[

2a1(λ)+2a2(λ)−2b1(λ)−a1+2a−(λ)−a1−2a− (λ)−a1+2a+(λ)−a1−2a+(λ)

−

p−1
2

∑

k=1

(

b2

(

λ − λ
(2,2)
k

)

+ b2

(

λ + λ
(2,2)
k

))

−

p+1
2

∑

k=1

(

b2

(

λ − λ
(1,2)
k

)

+ b2

(

λ + λ
(1,2)
k

))]

(3.16)

Defining ρtotal(λ) ≡ ρ(1)(λ) + ρ(2)(λ) and solving (3.16) using Fourier transform,6 we have

ρ̂total(ω) = 4ŝ(ω) +
1

N
R̂(ω) +

1

N
Ĵ(ω)

(

eiωλ̃(1)
+ eiωλ̃(2)

)

(3.17)

where ρ̂total(ω) , â2(ω)7 and ŝ(ω) are the Fourier transforms of ρtotal(λ) , a2(λ) and a1(λ)
1+a2(λ)

5Readers are urged to refer to figures 2 and 3 in that section
6Our conventions are

f̂(ω) ≡

Z ∞

−∞

e
iωλ

f(λ) dλ , f(λ) =
1

2π

Z ∞

−∞

e
−iωλ

f̂(ω) dω .

7 ân(ω) = sgn(n) sinh((ν−|n|)ω/2)
sinh(νω/2)

, 0 ≤ |n| < 2ν .
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respectively. Also Ĵ(ω) = â2(ω)
1+â2(ω) . R̂(ω) is the contribution from the second square bracket

in (3.16), which will not enter the calculation for Ehole(λ̃
(a)) and will be omitted henceforth.

The Fourier transform of hole density are the third and the fourth terms in (3.17), which

gives

ρhole(λ) =
1

N

[

J(λ − λ̃(1)) + J(λ − λ̃(2))
]

(3.18)

Using approximation (3.14) in (3.1), and making use of (3.18), one has

Ehole(λ̃
(a)) = −

Nπ sin µ

2µ

∫ ∞

−∞
dλ a1(λ)ρhole(λ) +

π sinµ

2µ

2
∑

a=1

a1(λ̃
(a)) (3.19)

which after some manipulation yields

Ehole(λ̃
(a)) =

π sin µ

4µ

2
∑

a=1

1

cosh πλ̃(a)
(3.20)

Generalizing the derivation to α number of holes, one has

ρhole(λ) =
1

N

∑

α

2
∑

a=1

J(λ − λ̃(a)
α ) (3.21)

and finally the following for the energy

Ehole(λ̃
(a)
α ) =

π sinµ

4µ

∑

α

2
∑

a=1

1

cosh πλ̃
(a)
α

(3.22)

Note that Ehole(λ̃
(a)
α ) increases as λ̃

(a)
α → 0 as mentioned above in paragraph following (3.9).

3.2 Casimir energy

In this section, we give the derivation of 1/N correction (Casimir energy) to the lowest

energy state, for the even N case (with one hole). This result is then generalized to include

odd N values as well as the low lying (multi-hole) excited states. We begin by presenting

the expression for the density difference between chain of finite length (with N spins),

ρ
(1)
N (λ) + ρ

(2)
N (λ) and that of infinite length, ρ∞(λ)

ρ
(1)
N (λ) + ρ

(2)
N (λ) − ρ∞(λ) = −

∫ ∞

−∞
dγ a2(λ − γ)

[

1

N

N
2

∑

β=−N
2

δ
(

γ − λ
(1,1)
β

)

− ρ
(1)
N (γ)

]

−

∫ ∞

−∞
dγ a2(λ − γ)

[

1

N

N
2

∑

β=−N
2

δ
(

γ − λ
(2,1)
β

)

− ρ
(2)
N (γ)

]

−

∫ ∞

−∞
dγ a2(λ − γ)

[

ρ
(1)
N (γ) + ρ

(2)
N (γ) − ρ∞(γ)

]

(3.23)
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In (3.23) and henceforth, only terms that are crucial to the computation of 1/N correction

are given. Other parameter dependant terms that contribute to order 1 correction have

been omitted here.8 Solving (3.23) yields

ρ
(1)
N (λ) + ρ

(2)
N (λ) − ρ∞(λ) = −

∫ ∞

−∞
dγ p(λ − γ)

[

1

N

N
2

∑

β=−N
2

δ
(

γ − λ
(1,1)
β

)

− ρ
(1)
N (γ)

]

−

∫ ∞

−∞
dγ p(λ − γ)

[

1

N

N
2

∑

β=−N
2

δ
(

γ − λ
(2,1)
β

)

− ρ
(2)
N (γ)

]

(3.24)

where ρ∞(λ) = 4a1(λ)
1+a2(λ) ≡ 4s(λ) and p(λ) = 1

2π

∫ ∞
−∞ dω e−iωλ â2(ω)

1+â2(ω) Similar equation

expressing the energy difference between finite and infinite system is also needed to compute

Casimir energy. This is given by

EN − E∞ = −
Nπ sin µ

2µ

{
∫ ∞

−∞
dλ a1(λ)

[

1

N

N
2

∑

β=−N
2

δ
(

λ − λ
(1,1)
β

)

− ρ
(1)
N (λ)

]

+

∫ ∞

−∞
dλ a1(λ)

[

1

N

N
2

∑

β=−N
2

δ
(

λ − λ
(2,1)
β

)

− ρ
(2)
N (λ)

]

+

∫ ∞

−∞
dλ a1(λ)

[

ρ
(1)
N (λ) + ρ

(2)
N (λ) − ρ∞(λ)

]

}

(3.25)

Using (3.24) and the fact that p̂(ω)â1(ω) = ŝ(ω)â2(ω), we have

EN − E∞ = −
Nπ sin µ

4µ

{
∫ ∞

−∞
dλ S

(1)
N (λ)ρ(1)

∞ (λ) +

∫ ∞

−∞
dλ S

(2)
N (λ)ρ(2)

∞ (λ)

}

(3.26)

where S
(l)
N (λ) ≡ 1

N

∑

N
2

β=−N
2

δ(λ − λ
(l,1)
β ) − ρ

(l)
N (λ) and ρ

(l)
∞(λ) = 1

2ρ∞(λ) ≡ 2s(λ) with

l = 1 , 2. Further, using Euler-Maclaurin summation formula [45], (3.26) becomes

EN −E∞ = −
Nπ sin µ

2µ

{

−

∫ ∞

Λ1

dλ ρ(1)
∞ (λ)ρ

(1)
N (λ) +

1

2N
ρ(1)
∞ (Λ1) +

1

12N2ρ
(1)
N (Λ1)

ρ(1)′
∞ (Λ1)

−

∫ ∞

Λ2

dλ ρ(2)
∞ (λ)ρ

(2)
N (λ) +

1

2N
ρ(2)
∞ (Λ2) +

1

12N2ρ
(2)
N (Λ2)

ρ(2)′
∞ (Λ2)

}

(3.27)

(3.24) can also be expressed in similar form

ρ
(1)
N (λ)+ρ

(2)
N (λ)−ρ∞(λ) =

∫ ∞

Λ1

dγp(λ−γ)ρ
(1)
N (γ)−

1

2N
p(λ−Λ1)−

p
′
(λ−Λ1)

12N2ρ
(1)
N (Λ1)

+

∫ ∞

Λ2

dγp(λ−γ)ρ
(2)
N (γ)−

1

2N
p(λ−Λ2)−

p
′
(λ−Λ2)

12N2ρ
(2)
N (Λ2)

(3.28)

8See [38] for details
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As before, µΛ1 and µΛ2 are the largest sea roots from the two “seas” respectively. From

this point, the calculation very closely resembles the details found in section 2 in [3]. Hence,

we omit the details and give only the crucial steps. Note that (3.28) can be written in the

standard form of the Wiener-Hopf equation [46] after redefining the terms,

χ(1)(t) + χ(2)(t) −

∫ ∞

0
ds p(t − s)χ(1)(s) −

∫ ∞

0
ds p(t − s)χ(2)(s) (3.29)

≈ f (1)(t)−
1

2N
p(t)+

1

12N2ρ
(1)
N (Λ1)

p
′
(t)+f (2)(t)−

1

2N
p(t)+

1

12N2ρ
(2)
N (Λ2)

p
′
(t)

where the following definitions have been adopted

χ(l)(λ) = ρ
(l)
N (λ + Λl)

f (l)(λ) = ρ(l)
∞(λ + Λl) (3.30)

and following change in variable is used: t = λ − Λl with l = 1 , 2 From the Fourier

transformed version of (3.29), one can solve for X
(l)
+ (ω) which is the Fourier transform of

χ
(l)
+ (t) that is analytic in the upper half complex plane,9

X̂
(l)
+ (ω) =

1

2N
+

iω

12N2ρ
(l)
N (Λl)

+ G+(ω)

[

ig1

12N2ρ
(l)
N (Λl)

−
1

2N
−

iω

12N2ρ
(l)
N (Λl)

(3.31)

+
π

π − iω

(

α

N
+

1

2N
−

ig1

12N2ρ
(l)
N (Λl)

)]

where G+(ω)G+(−ω) = 1 + â2(ω), g1 = i
12 (2 + ν − 2ν

ν−1 ) and α = 1
G+(0) = ( ν

2(ν−1) )
1
2 ,

with G+(0)2 = 2(ν−1)
ν . From (3.3), (3.30) and (3.31), one can then determine ρ

(1)
N (Λ1) and

ρ
(2)
N (Λ2) explicitly from

χ
(l)
+ (0) ≡

1

2
ρ
(l)
N (Λl) =

1

2π

∫ ∞

−∞
dω X̂

(l)
+ (ω) (3.32)

by contour integration and some algebra. We give the result below

ρ
(l)
N (Λl) =

1

4N

{

π + 2πα + ig1 +

[

π2 +
2ig1π

3
−

g2
1

3
+ 4π2α2 + 4πα(π + ig1)

]
1
2
}

. (3.33)

Finally, using ρ
(l)
∞(λ) ≈ 2e−πλ for λ → Λl and (3.27), one arrives at the desired expression

for 1/N correction to the energy,

EN − E∞ = ECasimir = −
π2 sin µ

24µN
(1 − 12α2) (3.34)

where the effective central charge is

ceff = 1 − 12α2 = 1 − 6
ν

(ν − 1)
(3.35)

9Again for complete details, refer to [3]
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We see that for this model, the central charge, c = 1 (Free boson). Also ceff is independent

of boundary parameters, unlike for the Dirichlet case [3]. This is a feature expected for

models with Neumann boundary condition. Further, from conformal field theory, one also

has the following for the conformal dimensions,

∆ =
1 − ceff

24
=

ν

4(ν − 1)
(3.36)

Note that the above results are derived for the lowest energy state for even N with one hole

for each Qa(u). Reviewing the derivation above, one can notice that the results above can

be further generalized for any N and for low lying excited states with arbitrary number of

holes, provided these holes are located to the right of the largest sea root as mentioned in

the beginning of section 3. For these excited states, the sum for S
(l)
N (λ) in (3.23) - (3.26)

will inevitably have different limits since the number of sea roots vary. However, after

applying the Euler-Maclaurin formula, one would recover (3.27) and (3.28). In addition to

that, for states with NH number of holes (all located to the right of the largest sea root),

one uses the more general result for the sum rule, namely (3.5) and ( 3.12) which eventually

yields

α =
NH

G+(0)
(3.37)

Thus, we have the following for the effective central charge and conformal dimensions for

low lying excited states

ceff = 1 − 6
ν

(ν − 1)
N2

H

∆ =
ν

4(ν − 1)
N2

H (3.38)

Surprisingly, the results (3.36) and (3.38) appear to have more resemblance to spin chains

with diagonal boundary terms, as one could see from the ν
ν−1 dependance [33]–[36], rather

than ν−1
ν [42] which is the anticipated form for conformal dimensions for spin chains with

nondiagonal boundary terms. Indeed the theory of a free Bosonic field ϕ compactified on

a circle of radius r is invariant under ϕ 7→ ϕ + 2πr, where r = 2
β . β is the continuum bulk

coupling constant that is related to ν by β2 = 8π( ν−1
ν ). Further, the quantization of the

momentum zero-mode Π0, yields Π0 = nβ
2 for Neumann boundary condition and Π0 = 2n

β

for the Dirichlet case, where n is an integer. Hence, the zero-mode contribution to the

energy, E0,n ∼ Π2
0 implies E0,n ∼ ∆ ∼ ( ν−1

ν ) for Neumann and E0,n ∼ ∆ ∼ ( ν
ν−1) for

Dirichlet case respectively. More complete discussion on this topic can be found in [35, 42].

Next, we will resort to numerical analysis to confirm our analytical results obtained in this

section.

4. Numerical results

We present here some numerical results for both odd and even N cases, to support

our analytical derivations in section 3.2. We first solve numerically the Bethe equa-

tions (2.3), (2.12), (2.13), (2.19) and (2.20) for some large number of spins. We use these
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N ceff , p = 1 , ν = 2 ceff , p = 3 , ν = 4

16 -9.365620 -2.853872

24 -9.857713 -3.271279

32 -10.122128 -3.557148

40 -10.287160 -3.770882

48 -10.399970 -3.939554

56 -10.481956 -4.077652

64 -10.544233 -4.193784
...

...
...

∞ -11.000315 -7.000410

Table 1: Central charge values, ceff for p = 1 (a+ = 0.783, a
−

= 0.859) and p = 3 (a+ = 2.29,

a
−

= 1.76), from numerical computations based on N = 16 ,24 ,. . . ,64 and extrapolated values at

N → ∞ limit (Vanden Broeck and Schwartz algorithm).

solutions to calculate Casimir energy numerically from the following

E = Ebulk + Eboundary + ECasimir (4.1)

In (4.1), E is given by (3.1). Thus, having determined the Bethe roots numerically, one

uses known expressions for Ebulk [48] and Eboundary [38] to determine ECasimir. Then using

the expression found above for ECasimir, namely (3.34), one can determine the effective

central charge, ceff for that value of N ,

ceff = −
24µN

π2 sinµ
(E − Ebulk − Eboundary) (4.2)

Finally, we employ an algorithm due to Vanden Broeck and Schwartz [39]–[40] to extrapo-

late these values for central charge at N → ∞ limit. Table 1 above shows the ceff values for

some finite even N , for the lowest energy state with one hole (NH = 1). Equation (3.38)

predicts ceff values of -11 and -7 for p = 1 and p = 310 respectively which are the extrapo-

lated values (-11.000315 and -7.000410) we obtain from the Vanden Broeck and Schwartz

method.

For odd N sector, since NH = 0, (3.38) predicts ceff = 1 (for the ground state) for

any odd p. We present similar numerical results for odd N in table 2 below for p = 1

and p = 3. We work out the ceff values numerically for N = 15 ,25 ,. . . ,65. Excellent

agreement between the calculated and the extrapolated values of 1.000770 and 1.001851

again strongly supports our analytical results.

5. Discussion

From the proposed Bethe ansatz equations for an open XXZ spin chain with special non-

diagonal boundary terms at roots of unity, we computed finite size effect, namely the 1/N

10ν = p + 1
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N ceff , p = 1 , ν = 2 ceff , p = 3 , ν = 4

15 0.898334 0.531501

25 0.936128 0.634012

35 0.953433 0.692758

45 0.963360 0.731841

55 0.969797 0.760142

65 0.974311 0.781795
...

...
...

∞ 1.000770 1.001851

Table 2: Central charge values, ceff for p = 1 (a+ = 0.926, a
−

= 0.654) and p = 3 (a+ = 2.10,

a
−

= 1.80), from numerical computations based on N = 15 ,25 ,. . . ,65 and extrapolated values at

N → ∞ limit (Vanden Broeck and Schwartz algorithm).

correction (Casimir energy) to the lowest energy state for both even and odd N . We also

studied the bulk excitations due to holes. We found some peculiar results for these excita-

tions of this model. Firstly, the number of holes for excited states seem to be reversed: even

number of holes for chains with odd number of spins and vice versa. However, one could

explain this by resorting to heuristic arguments involving effects of magnetic fields on the

spins at the boundary. We then computed the energy due to hole-excitations. We further

generalized the finite-size correction calculation to include multi-hole excited states, where

these holes are situated to the right of the largest sea root. Having found the correction, we

proceeded to compute the effective central charge, ceff and the conformal dimensions, ∆ for

the model. We found the central charge, c = 1. The effective central charge is independent

of the boundary parameters, as expected for models with Neumann boundary condition.

The result for ∆ however, turns out to be similar to models with diagonal boundary terms

rather than the nondiagonal ones, to which the model studied here belongs to.

As an independent check to our analytical results, we also solved the model numerically

for some large values of N . We used this solution to compute 1/N correction for these

large N values, then extrapolate them to the N → ∞ limit using Vanden Broeck and

Schwartz algorithm. Our numerical results strongly support the analytical derivations

presented here. Spectral equivalences between diagonal-nondiagonal and diagonal-diagonal,

nondiagonal-nondiagonal and diagonal-diagonal [15, 16, 50] open XXZ spin chains have

been shown to exist. Hence, one may attempt to explain the diagonal (Dirichlet) behaviour

of the model studied here by some such equivalence. However, to our knowledge, such

equivalences have been found when the boundary parameters obey certain constraint [6]–

[9], which is not the case for the model we considered here, as already remarked in Footnote

1. Hence, the question about the “Dirichlet-like” behaviour remains for now. We hope to

be able to resolve this issue soon.

There are many other open questions that one can explore and address further. For

example, similar analysis involving boundary excitations can also be carried out. This can

be really challenging even for the diagonal (Dirichlet) case [34, 49]. Further, solution for

more general XXZ model involving multiple Q(u) functions [12, 13], can also be utilized
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in similar capacity to explore these effects. Last but not least, excitations due to other

objects that we choose to ignore here, such as special roots/holes and so forth can also be

explored for these models in order to make the study more complete. We look forward to

address some of these issues in near future.
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